fbpx
  • Toyota Mirai, il futuro a idrogeno è posteriore secondo Yoshikazu Tanaka

    Mirai significa futuro in giapponese ed è una parola che sta anche nel nome di Miraitowa che vuol dire “il futuro per sempre” ed è insieme a Someity, una delle due mascotte dei prossimi Giochi Olimpici e Paralimpici di Tokyo 2020.

    Miratowa e Someity mascotte Olimpiadi Tokyo 2020

    Mirai è anche il nome della prima auto ad idrogeno prodotta in serie da Toyota dal 2015 e lo sarà anche per la seconda generazione attesa per il 2020. Sorprendente per lo stile, ha debuttato in occasione della 46ma edizione del Salone di Tokyo in forma di concept, ma con un grado di compiutezza assolutamente degno di un’auto di serie.

    Ad accompagnarla come un’ombra c’era l’ingegnere capo in persona, Yoshikazu Tanaka (foto sotto) che aveva firmato già la prima generazione, prodotta in circa 10mila esemplari.

    Toyota Mirai concept

    Quali sono gli elementi di novità essenziali sulla nuova Mirai?

    «Un design attraente ed emozionale, un concetto totalmente nuovo grazie alla trazione posteriore, ad un posizione di guida più coinvolgente e ad un abitacolo più lussuoso per 5 persone. E poi c’è l’autonomia aumentata del 30%».

    Mi dice qualcosa di più sulla disposizione di tutti gli elementi del sistema di propulsione della nuova Mirai?

    «Al momento non posso dire nulla. Diremo di più quando organizzeremo le prime prove su strada. Posso dire solo che anche il motore è posizionato posteriormente».

    Toyota Mirai muso da sopra

    Allora perché la vettura ha questo cofano così lungo visto che non contiene il motore?

    «C’è qualcosa di molto interessante! In questo momento non possono ancora svelare cosa, ma c’è roba buona, glielo posso assicurare!»

    Questa nuova Mirai è la sua auto ad idrogeno ideale o è solo il secondo passo di un percorso appena iniziato?

    «È sicuramente un’automobile diversa, più evoluta. Abbiamo chiesto ai clienti della prima generazione e loro sono stati molto chiari: aumentare l’autonomia, lo spazio all’interno dell’abitacolo e avere un look più attraente. Partendo da questi presupposti, abbiamo creato una nuova combinazione e crediamo che sia la migliore».

    Toyota Mirai concept

    Può dirci di quanto è aumentata la densità di energia dello stack e quanto invece ne è diminuito il costo?

    «Abbiamo aumentato tutti i parametri fondamentali diminuendo i costi, ma non posso dire ancora quanto».

    La nuova Mirai nasce su una piattaforma completamente nuova o già esistente?

    «È basata su una piattaforma della famiglia modulare TNGA, la GA-L (quella delle Lexus LS e LC, ndr). La scocca è in acciaio e alluminio. Ma anche per questo, ne saprete di più tra un po’ di tempo… »

    Mentre ci dice questo, si vede benissimo che mister Tanaka brucia dalla voglia di dirci qualcosa.

    La discussione allora va alla precedente Mirai, a quando intervenne a Venezia per un convegno mentre la Laguna era ricoperta di neve e a tutti i punti caldi di una tecnologia più volte rimandata, più volte riproposta e forse ultimamente non compresa in tutte le sue potenzialità.

    Clicca qui e LEGGI l’articolo sull’incontro a Venezia con Tanaka, Chef Engineer della Toyota Mirai a Idrogeno.

    Che non sia il riflesso di chi vuole l’accettazione incondizionata dell’auto elettrica a batterie, senza discussioni o concorrenti?

    L’atteggiamento di Toyota in questo senso sembra molto aperto: deciderà il cliente, sta a noi costruttori offrire la soluzione migliore per lui.

    Toyota Mirai concept

  • Idrogeno, Elon Musk ha ragione o si sbaglia?

    di Giuliano Daniele – giornalista di Motor1.com
    La frase “checché ne dica Elon Musk, i camion elettrici a batteria non hanno senso” è stata al centro di uno dei dibattiti più interessanti fra quelli a cui abbiamo partecipato in questi giorni a Londra, in occasione dell’evento Hydrogen Society promosso da organi governativi da un lato e dall’altro da aziende che lavorano sul tema dell’idrogeno da anni.
    Hydrogen Society a Londra

    E noi, come rappresentanti italiani, siamo stati chiamati da Toyota per discutere di questi argomenti partendo dalla mobilità, che sarà al centro del cambiamento. Ecco in che modo, secondo quanto emerso da questo convegno.

    Auto scritta Hydrogen Powered

    Focus sui mezzi pesanti

    In particolare, è proprio sui cosiddetti mezzi pesanti (autobus, autoarticolati, veicoli commerciali) e non sulle automobili che gli esperti britannici chiamati in causa hanno voluto focalizzare l’attenzione. Parliamo di esponenti di brand molto conosciuti nel settore automotive – come appunto ​Toyota, oppure Shell, Arval – e di aziende con una conoscenza radicata nel tempo nel campo di tutto ciò che riguarda celle a combustibile, elettrolizzatori o reti di produzione e distribuzione dell’idrogeno: Johnson Matthey, ITM Power, Intelligent Energy, Fuel Cell Systems, Arcola Energy, Riversimple, Tayler Construction Plant, JC Easycabin Ecosmart, Element Energy.

    Aziende ed Enti pubblici

    Sono proprio la collaborazione fra le aziende e il coinvolgimento degli enti pubblici i due punti chiave per rendere sostenibile il progresso futuro dei paesi sviluppati e di quelli in via di sviluppo, mettendo in atto più soluzioni e ragionando su un lasso temporale di decenni, anziché di anni. Un altro esempio di questo tipo di joint venture, oltre al caso britannico, è quello di H​2 M​obility in Germania, un’iniziativa pensata per spalmare il rischio d’impresa nella fase iniziale della diffusione dell’idrogeno, in cui prima di fare profitti bisogna investire per creare le basi di un nuovo mercato energetico. Fra le aziende coinvolte ci sono BMW, Daimler, Toyota, Volkswagen, Shell, Total, Air Liquide e il Gruppo Linde.

    Industria, riscaldamento, trasporti

    Il fatto che il cambiamento non solo possa, ma debba iniziare dalla mobilità si basa sul ragionamento per cui le attività produttive umane che oggi si reggono sugli idrocarburi siano classificabili in 3 grandi categorie: industria, riscaldamento, trasporti. I primi due sono i settori più difficili da decarbonizzare nel passare dall’energia fornita tipicamente dal gas naturale a quella dell’idrogeno.

    Ed è una questione di scala: le dimensioni e dunque i costi di conversione anche solo di un singolo stabilimento siderurgico o chimico, oppure di un metanodotto, impediscono di partire da qui, con investimenti nell’ordine del miliardo di euro per impianto.

    Auto scritta Shell Hydrogen

    Strategia degli investimenti

    La strategia dunque è quella di investire cifre minori (di cui parleremo fra poco) nei trasporti, in modo che possano far da volano per stimolare l’utilizzo della nuova fonte di energia in altri settori. È proprio quello in cui credono i player che abbiamo incontrato nel Regno Unito, iniziando a sostituire progressivamente i veicoli pesanti alimentati a gasolio con dei nuovi mezzi Fuel Cell.

    Il meccanismo immaginato è quello in cui le amministrazioni pubbliche e le flotte aziendali private dovrebbero effettuare ordini di centinaia di veicoli a celle a combustibile.

    Costo dei Bus a idrogeno con celle a combustibile

    A titolo di esempio, oggi un autobus Fuel Cell costa in media 500.000 euro, cosa che per flotte di decine di mezzi porterebbe a blocchi di investimento di 100-200 milioni di euro e dunque alla creazione di nuclei iniziali di domanda di idrogeno capaci di innescare la collaborazione fra istituzioni e società energetiche per la realizzazione delle prime stazioni di rifornimento.

    Costo delle stazioni di rifornimento di idrogeno

    Che, a loro volta, hanno un costo medio unitario di circa 1 milione di euro e quindi – di nuovo – si tratta di investimenti inferiori a quelli dello scenario immaginato per i settori dell’industria e del riscaldamento

    Pompa combustibile clean fuel

    Checchè ne dica Elon Musk

    Ecco perché l’elettrificazione dei mezzi pesanti attraverso le fuel cell sembra essere la chiave per la conversione all’idrogeno, al di là di ciò che Elon Musk sostiene con il suo progetto di motrice per autoarticolati a batteria, il Tesla Semi.

    L’idea inglese

    La convinzione dell’alleanza industria-governo in Gran Bretagna è che elettrificare questo tipo di veicoli non abbia senso. Il punto di partenza del discorso è la superiore densità di energia che l’idrogeno garantisce rispetto alle batterie.

    Allo stato attuale delle cose, infatti, il pacco di accumulatori necessario a far muovere un classico “camion” peserebbe 8.000 kg – 9.000 kg, che andrebbero aggiunti ai circa 18.000 kg di peso medio di un autoarticolato in condizioni di lavoro.

    Anche se, nella categoria di mezzi a cui appartiene il Tesla Semi si può arrivare anche fino a 36.000 kg, tenendo conto sia della massa del veicolo che del carico trasportabile. E siccome un camion senza motore pesa circa 7.000 kg, per differenza rimarrebbero 29.000 kg residui da spartire fra il peso delle batterie di un veicolo elettrico e quello della merce da trasportare. Ed ecco come si arriva a fare queste stime.

    Facciamo un po’ di conti

    Si tenga presente che un camion a gasolio attuale è in grado di spostare 20.000 kg garantendo percorrenze tra un rifornimento e l’altro anche di 1.500 km, mentre le promesse di autonomia del Tesla Semi durante la presentazione sono state al massimo di 800 km.

    Elon Musk non ha dichiarato il peso del camion a vuoto, da cui si dedurrebbe il peso del carico, e il probabile motivo della mancanza di questa informazione è attendere che nei prossimi 2-3 anni la densità di energia delle batterie (cioè quanto può dare un carburante o un batteria in relazione al suo peso) migliori.

    Seminario Hydrogen society londra 2019

    Densità energetica

    Consideriamo ottimisticamente che le batterie al litio abbiano una densità di energia di 250 Wh / kg, contro i 13.000 Wh / kg della benzina e i 40.000 Wh / kg dell’idrogeno.

    Per cui, per stimare quanto dovrebbero pesare le batterie di un Tesla Semi per essere competitivo, si può fare riferimento all’energia richiesta per spostarlo, basata sulla formula Energia = Potenza x Tempo.

    Ed essendo Potenza = Forza x Velocità e Tempo = Distanza, espressa in autonomia / velocità media del camion, si può arrivare all’equazione secondo cui

    Energia = [ (Resistenza aerodinamica + Resistenza al rotolamento + Forza di gravità) / (rendimento “dalla batteria alle ruote”) + (Inerzia) ] x ( Distanza / Velocità ).

    EQUAZIONE

    E = [(1⁄2 ρ⋅C​d⋅​ A⋅v3​ ​rms+​ C​rr⋅​ W​t⋅​ g⋅v+T​f⋅​ W​t⋅​ g⋅v⋅Z) / η​bw+​ 1⁄2 W​t⋅​ v⋅a (1/ η​bw−​ η​bw⋅​ η​brk)​ ] ⋅ (D/v)

    Fonte: S Sripad, V Viswanathan – ACS Energy Letters, 2017 – ACS Publications – Formula per calcolo capacità e costo batterie di un veicolo elettrico – https://battery.real.engineering/

    Più in dettaglio, le resistenze al moto sono quella aerodinamica, quella dovuta agli attriti di rotolamento e la forza peso contraria al moto quando si affrontano strade in salita che, se le stime dell’autonomia fossero fatte in pianura, sarebbe una componente nulla.

    Nel calcolo della forza richiesta a superare l’inerzia del veicolo, invece, intervengono i rendimenti dei motori elettrici, dei freni e l’energia recuperata nella frenata rigenerativa.

    Tesla Semi

    Il camion Tesla Semi

    Tenendo conto che il coefficiente di penetrazione aerodinamica del Tesla Semi è di 0,36 e assumendo una velocità media di 70 km/h e dei valori realistici per altri parametri (come la sezione frontale, il coefficiente di attrito volvente o l’efficienza nella rigenerazione di energia in frenata) si può stimare che un mezzo come il Tesla Semi possa aver bisogno di un pacco batterie da 900 – 1.000 kWh per coprire 800 km di autonomia.

    Apparentemente pesante e costoso

    Tradotto: con le attuali densità di energia, ci vorrebbero circa 8.000 kg di batterie per un costo di oltre 160.000 euro. E un camion a gasolio tradizionale costa meno di questa cifra considerando tutto il veicolo, non solo le batterie di un omologo elettrico che, in più, avrebbe meno autonomia e meno capacità di carico di un mezzo pesante.

    Inoltre, se nell’equazione si tiene conto di pendenze medie diverse da 0 ecco che la capacità della batteria richiesta – e dunque il peso – aumenta.

    Esempio: tenendo conto di una pendenza del 5% il Tesla Semi nella versione da 800 km necessiterebbe di altri 200 kWh di capacità richiesta oltre al pacco batterie da 900 – 1.000 kWh e per ulteriori 2.000 kg peso, mentre il costo salirebbe di altri 40.000 euro.

    Costi

    Insomma, siccome peso e costo delle batterie sono i 2 parametri principali che le aziende di trasporto considererebbero al momento dell’acquisto di un camion elettrico, i tempi per arrivare al punto di pareggio dell’investimento si allungherebbero, pur tenendo in considerazione che il costo chilometrico del camion elettrico sarebbe del 20% inferiore.

    C’è però anche da considerare che un camion elettrico userebbe il 25% di energia in meno di un camion a gasolio, tenendo conto dell’efficienza dei suoi motori elettrici, oltre che il fatto che gran parte di questa energia si potrebbe ottenere da fonti rinnovabili.

    Seminario Idrogeno Hydrogen Society Londra 2019

    Emissioni di CO2

    Al di là del ragionamento economico di cui sopra, ci sono dunque i presupposti per cui un mezzo del genere riduca effettivamente le emissioni di gas serra. In aggiunta, c’è da valutare la questione del rifornimento.

    Il gioco dei kW

    Per un veicolo elettrico, una colonnina fast charge ad oggi è in grado di erogare valori tipici di 150 kW, salendo a 350 kW nei casi migliori. I sostenitori dell’idrogeno parlano invece di 3.000 kW, riferendosi nel caso specifico alla potenza contenuta in un pieno di gas per un mezzo pesante, realizzabile in un tempo inferiore anche ai 5 minuti.

    Analisi di efficienza

    E infine c’è l’argomento efficienza, che a grandi linee per l’idrogeno è di circa il 60%, in riferimento a tutto il ciclo di utilizzo di questo gas e quindi ai rendimenti – e dunque alle perdite – nei vari processi di elettrolisi, immagazzinamento e distribuzione, fino alla riconversione nelle celle a combustibile per far muovere i veicoli.

    Sempre riportando le analisi di chi sostiene la validità dell’idrogeno, per paragone questo rendimento sarebbe sì inferiore a quello di un veicolo elettrico alimentato a batterie, ma la tempo stesso superiore a quello di un buon motore a combustione interna di un veicolo leggero (intorno al 30%) e a quello di un tradizionale mezzo pesante a gasolio (circa il 50%).

    Anche se, va detto, questi ultimi valori si riferiscono alla “bontà” del singolo motore e non all’efficienza di tutta la catena di produzione e utilizzo dell’energia, come nel caso dell’idrogeno.

    Catamarano idrogeno torre di londra

    Il caso del Regno Unito

    In ogni caso, sempre prendendo come caso studio il Regno Unito, si stima che nel 2030 circoleranno 1,5 milioni di veicoli Fuel Cell e che nel 2040 il governo impedirà la commercializzazione di nuovi mezzi con motore a combustione interna. Pertanto, l’idrogeno è un argomento strategico anche a livello politico: ​la Gran Bretagna – così come il Giappone, ad esempio – ritiene infatti che sposando l’idea di un’elettrificazione della società basata solo sulle batterie non sia possibile mantenere l’indipendenza. Al contrario dell’idrogeno, che essendo producibile internamente non costringerebbe alcune nazioni a dipendere da altre su un tema così delicato come l’approvvigionamento energetico.

    La soluzione

    La soluzione non esiste. Almeno, non se intesa come unica.

    Clicca qui LEGGI l’articolo e guida il VIDEO: Idrogeno, attenti al grande ritorno.

    Già, la via da percorrere nel passare da una società basata sui combustibili fossili al prossimo modello di sviluppo dovrà reggersi non più su un’unica fonte energetica, per quanto molti possano pensare che a risolvere tutto sarà l’elettrificazione, ma senza specificare di che tipo.

    Quella dei trasporti, in particolare, non potrà essere solo alimentata dalle batterie: nel processo di decarbonizzazione del pianeta, infatti, c’è da tenere a mente anche il ruolo dell’idrogeno.

     

  • Toyota veicolo lunare a idrogeno con celle a combustibile

    La Toyota e la JAXA, agenzia spaziale giapponese, dopo aver lavorato insieme allo sviluppo di un concept di veicolo lunare pressurizzato – in grado cioè di trasportate passeggeri all’interno – hanno annunciato di voler continuare nello sviluppo del progetto.

    Il veicolo allo studio è un lunar rover alimentato a idrogeno e dotato di celle a combustibile, una tecnologia nella quale la Toyota crede molto per la prospettiva energetica e di mobilità mondiale, che in condizioni lunari sarà in grado di garantire 10.000 chilometri di autonomia di marcia.

    Si conferma così il grande potenziale che alcune grandi economie mondiali vedono nel nuovo vettore energetico idrogeno, che proprio alle missioni spaziali deve il suo sviluppo della seconda metà del Novecento.

    Il veicolo lunare della Toyota è lungo 6 metri, largo 5,2 e alto 3,8 metri per un volume abitabile di 13 metri cubi ed è progettato per due passeggeri, con la capacità di ospitarne fino a quattro in caso di necessità.