fbpx
  • Catturare la CO2 con il CCS Carbon Capture and Storage

    E’ possibile catturare la CO2 con il CCS Carbon Capture and Storage.

    Si chiama CCS, dalla definizione in inglese Carbon Capture and Storage. Cioè cattura e immagazzinamento del carbonio. Si tratta in pratica di realizzare un’opera di sottrazione di emissioni prodotte dalla combustione di prodotti petroliferi e soprattutto del carbone prima che vengano disperse in aria.

    Questo può essere visto come aggiuntivo o alternativo rispetto alle azioni che ci permettono di emettere meno anidride carbonica in atmosfera. Prima tra tutte la produzione di energia da fonti rinnovabili invece che da fonti fossili.

    Gli sfidanti. Forze e debolezze.

    La soluzione che punta a catturare la CO2 con il CCS piace molto alle compagnie petrolifere e anche ai produttori di elettricità che hanno molti impianti a carbone. Investendo in questa tecnologia, in pratica evolvono le loro tecnologie e allungano l’esistenza dei loro impianti. Quindi anche dei dei loro affari legati a combustibili fossili.

    Schema di CCS con utilizzo e stoccaggio della CO2 – Fonte BP

    Come catturare la CO2

    Esistono diverse strade per arrivare alla separazione e alla cattura della CO2 in campo energetico, raggruppabili in tre grandi filoni. Cattura post-combustione, pre-combustione, Oxyfuel.

    Post-combustione

    Sono le tecniche più diffuse negli impianti sperimentali e dimostrativi esistenti. E sono le più gradite all’industria energetica. In pratica rimane tutto com’è, ma alla fine del processo di combustione i gas di scarico, dopo i sistemi di filtraggio per polveri e inquinanti, invece di essere immessi in atmosfera vengono inviati a un sistema di trattamento capace di separare la CO2 con processi termochimici (ne esistono diversi messi a punto in varie aree del mondo).

    Pre-combustione

    In questo caso viene trattato il combustibile, non il residuo della combustione. Il principale sistema è la gassificazione del carbone. Partendo da carbone e acqua si arriva ad avere idrogeno e CO2. L’idrogeno va ad alimentare il processo energetico e l’anidride carbonica viene inviata allo stoccaggio.

    Oxyfuel

    A cambiare non è il combustibile, ma il comburente. Cioè il gas con cui il combustibile reagisce nella combustione, che in questo caso non è più aria, ma ossigeno puro. Questo porta a una percentuale di CO2 nei fumi di scarico molto alta e agevolmente separabile.

    Agli antipodi rispetto a una strategia basata sul CCS ci sono gli operatori economici delle fonti rinnovabili, che vedono negli investimenti in impianti di separazione e stoccaggio di CO2, tutt’ora molto costosi e bisognosi della mano pubblica per ambire a diffondersi, un aiuto ingiustificato alla vecchia e ricca economia del petrolio e del carbone.

    Oltre al fatto che lo stoccaggio della CO2, realizzato in impianti minerari o petroliferi dismessi o a fine vita, oppure in siti sottomarini, non rappresenta secondo loro una vera soluzione ma piuttosto una sorta di parcheggio temporaneo.

    Che futuro fa.

    Gli impianti di cattura e stoccaggio della CO2 non si stanno sviluppando come era stato prospettato negli scorsi anni.

    I costi sono alti e le fonti rinnovabili diventano sempre più competitive. Il loro successo futuro, nonostante abbiano amici ricchi e potenti, è tutt’altro che scontato. Questo vale in modo particolare per i post-combustione, che sembravano invece i più vicini al successo.

    Dico la mia, perché le cose possono cambiare. E spesso è meglio che cambino.

    La mia opinione è che l’abbassamento delle emissioni – anche con CCS – e la sostituzione delle fonti fossili con le rinnovabili possano andare di pari passo.

    Non deve essere la mano pubblica, però, a finanziare impianti che limitando il danno ambientale favoriscono la stessa industria che quel danno lo provoca da decenni ed avrebbe ampi mezzi per investire in tecnologie pulite, se veramente decidesse che è il momento di farlo.

    Gli investimenti pubblici devono andare alla ricerca e allo sviluppo di soluzioni mirate allo sfruttamento di fonti rinnovabili e puntare all’obiettivo di avere Zero Emissioni all’origine.

  • Volkswagen elettrica vs Diesel chi emette più CO2

    Volkswagen confronta auto elettrica vs diesel e calcola chi emetta più CO2 su tutto il ciclo di vita.

    Il calcolo della Volkswagen mette a confronto una Volkswagen Golf elettrica e-Golf con una Volkswagen Golf TDI Diesel valutando il loro impatto ambientale nell’intero ciclo di vita (LCA – life cycle assessment), quello che in gergo viene definito “cradle-to-grave” ovvero dalla culla alla tomba.

    Com’è fatto il calcolo

    L’analisi certificata comunicata dalla Volkswagen prende in esame tutto il ciclo di vita dei due modelli.

    Partendo da prima che l’auto arrivi su strada e il vettore energetico dentro il serbatoio o la batteria. Passando per l’utilizzo su strada, quello che io definisco il durante nel mio schema di valutazione. Arrivando a dopo che l’auto abbia concluso la sua funzione utile alla mobilità e venga rottamata. (Clicca qui e LEGGI articolo con VIDEO su Emissioni auto e Ciclo di vita).

    Vince l’elettrico, emette meno CO2

    Secondo le valutazioni di Volkswagen, considerando tutto il ciclo di vita una Golf TDI Diesel produce in media 140 g/km di CO2 mentre una Golf elettrica e-Golf si ferma a 119 g/km.

    Risultati neppure troppo distanti, ma con una composizione nettamente diversa.

    Volkswagen Golf TDI Diesel vs e-Golf elettrica

    Per la versione Diesel ben 111 g/km del totale sono generati dal carburante, ovvero dalla sua combustione e dalle emissioni generate durante tutta la catena che va dall’estrazione del petrolio fino all’emissione del gasolio alla pompa.

    Nella fase di vita attiva la e-Golf emette 62 g/km, derivanti dalla generazione di energia elettrica e dalla sua distribuzione considerando il mix medio attuale in Europa.

    I rapporti si ribaltano per la complessa e articolata fase di costruzione dell’automobile: la TDI causa l’emissione di 29 g/km di CO2 contro i 56 g/km della elettrica. La colpa è della quantità di energia necessaria a produrre la batteria e ad estrarre i minerali che la compongono.

    L’ammortamento ambientale

    Questa struttura porta anche ad un diverso ammortamento ambientale: da questo punto di vista, la Volkswagen e-Golf comincia a produrre benefici rispetto alla TDI dopo 125mila km.

    I margini di miglioramento

    L’elettrica però ha maggiori potenzialità di miglioramento. Se infatti tutta l’energia elettrica utilizzata per marciare provenisse da fonti rinnovabili, i 62 g/km di CO2 si ridurrebbero a soli 2 g/km.

    L’impronta totale sul ciclo di vita di una e-Golf può arrivare così a 59 g/km (contro i 140 g/km della Diesel).

    La situazione per la Volkswagen ID del 2020

    La futura auto elettrica Volkswagen ID. prevista nel 2020, secondo le informazioni fornite dalla VW, avrà una batteria che potrà vantare un’impronta di CO2 inferiore del 25%. Vantaggio che, in caso di utilizzo di energia da fonti rinnovabili, può arrivare fino al 50%.

    Considerando che la batteria pesa per il il 43% sul bilancio totale, si può ipotizzare che un ID. alimentata solo ad energia verde possa far fermare il conteggio delle sue emissioni su tutto il ciclo ben sotto i 45 g/km.

    L’approccio della Volkswagen

    Lo studio è interessante perché offre una quantificazione precisa dell’impronta ambientale, scomponendone la struttura e permettendo di identificare il ruolo di ciascun segmento di cui è composta. Questo è ciò che si deve correttamente fare in un’analisi LCA, ma segna un vero cambio di passo nell’approccio di un grande costruttore rispetto all’analisi delle emissioni.

    Nel caso specifico, tale strumento è stato utilizzato per confrontare lo stesso prodotto dotato di due sistemi di propulsione diversi sulla base di una percorrenza di 200.000 km.

    Il riciclo delle batterie al litio

    Da questa quantificazione non è ovviamente esclusa quella, altrettanto problematica, del riciclo delle batterie, per il quale l’Italia è in prima fila per arrivare per prima con la tecnologia migliore (Clicca qui e LEGGI articolo Riciclo Made in Italy per le batterie al litio)

    A questo proposito, anche la Volkswagen ha avviato sin dal 2009 un progetto denominato LithoRec. E sta sperimentando nel suo impianto pilota di Salzgitter un processo di fine vita che permetta il riciclo della preziosa polvere nera (chiamato anche black mass) contenente proprio il Litio, il Cobalto, il Manganese e il Nichel che possono essere riutilizzati per nuove batterie. (Clicca qui e LEGGI l’articolo Riciclo batterie al litio Volkswagen inizia la corsa industriale)

    Tale tema preoccupa molto le case automobilistiche visto che, per la normativa europea, i costi di riciclo dei veicoli prodotti sono a loro carico e le batterie contengono diversi elementi chimici il cui recupero è essenziale anche per mettere in sicurezza tutta la filiera di approvvigionamento e, se possibile, internalizzarla almeno in percentuale per prenderne il controllo.

    In ogni caso, vista la durata degli accumulatori e la possibilità che abbiano una seconda vita dopo quella vissuta a bordo delle auto,  la Volkswagen prevede che il riciclaggio delle batterie non rappresenterà un problema rilevante fino alla fine del prossimo decennio.

    L’indice di decarbonizzazione

    La casa tedesca ha infine creato un indice di decarbonizzazione denominato DKI che misura le tonnellate di CO2 equivalente prodotta in totale da un veicolo nel suo intero ciclo di vita. Nel 2015 Volkswagen era a 43,6 e per il 2025 l’obiettivo è di tagliarlo del 30% per l’intero gruppo.

    Segno che la lotta alle emissioni, quella condotta a tutto campo, sarà molto più lunga e difficile di quella considerata solo al tubo di scarico.

  • Emissioni delle auto e Ciclo di vita

    Si fa presto a dire emissioni. Emissioni delle auto e ciclo di vita sono strettamente correlati.

    Per capire di cosa stiamo realmente parlando e quali siano le opzioni per ridurre l’impatto ambientale di ogni prodotto, auto compresa, si deve analizzare infatti analizzare l’intero ciclo industriale, se non addirittura socio-economico-ambientale, che lo riguarda.

    L’automobile, infatti, è fatta di un prima, un durante e un dopo. Ha cioè, un intero ciclo di vita – questa è la definizione corretta – che va attentamente valutato per arrivare a risultati significativi in termini di emissioni e impatto ambientale.

    Gli sfidanti. Forze e debolezze.

    Parlando di emissioni auto e ciclo di vita la sfida è tra tre tempi della stessa partita, o tra tre atti della stessa rappresentazione.

    Prima

    Cioè quello che avviene prima che l’auto inizi a svolgere la sua funzione, quella per cui viene acquistata e messa su strada. Il prima ha a che fare con l’estrazione, il trasporto, la prima lavorazione dei materiali grezzi, la produzione e l’assemblaggio dei componenti e poi dell’auto completa. Poi c’è la distribuzione, fino alla concessionaria di consegna al cliente finale.

    Questa è la frazione più complessa dell’intero ciclo, perché vede arrivare materiali e pezzi da diverse aree del mondo. Operazioni realizzate utilizzando l’energia e la logistica disponibile ed economicamente conveniente in ogni situazione specifica.

    E’ difficilissimo capire e ricostruire esattamente cosa succeda nel “prima” e con la delocalizzazione e la globalizzazione del sistema industriale il rischio di avere pezzi di processo che finiscano fuori controllo è molto elevato.

    Durante

    Quello che succede durante l’utilizzo è sotto gli occhi di tutti ed è l’elemento più osservato, normato e discusso tra i tre effettivamente responsabili delle emissioni. Stiamo parlando delle emissioni inquinanti, regolate su tutti i principali mercati e limitate in Europa dalle normative di omologazione arrivate oggi ad Euro 6, anzi Euro 6 D-Temp per essere precisi, che diventerà Euro 6 pieno a partire dal 2020 e 2021 per auto di nuova omologazione e immatricolazione.

    E delle emissioni di CO2, quindi del consumo chilometrico di combustibile fossile. Anch’esse limitate da normative europee e destinate ad arrivare a circa 95 g/km nel 2020-2021 e poi a scendere ancora fino a poco più di 60 g/km nel 2030 secondo gli orientamenti attuali. (Clicca qui e LEGGI articolo e VIDEO Emissioni e cambiamenti climatici, l’incredibile bugia).

    Dopo

    Il fine vita delle automobili rappresenta la fase di rottamazione. E’ ben normato per quanto riguarda il recupero dei materiali ma anche questo si presta a situazioni di poca chiarezza e va assumendo nuova importanza man mano che nelle auto aumenta la percentuale di componenti informatici, elettronici, elettrici con il conseguente aumento di materiali una volta assenti, come metalli preziosi, terre rare, silicio, cobalto e fino al litio delle nuove batterie di trazione.

    Che futuro fa.

    L’attenzione di tutti è soprattutto sulle emissioni generate nel corso della vita utile, cioè su strada.

    E’ giusto che si dia la massima attenzione a questa fase, perché in funzione della durata della vita di un’auto e della tecnologia di trazione rappresentano oggi nella maggior parte dei casi per auto diesel e benzina il 70-80% del totale delle emissioni dell’intero ciclo di vita.

    Sono in’arrivo però auto sempre più complesse e progressivamente elettrificate. Capaci proprio per questo di emettere meno in fase di utilizzo. Ma che spesso causano più emissioni in fase di produzione e dismissione.

    L’attenzione sulle due fasi finora abbastanza nascoste del ciclo di vita di un’auto, cioè il prima e il dopo, andrà giustamente aumentando.

    Dico la mia, perché le cose possono cambiare. E spesso è meglio che cambino.

    Secondo me non si può prescindere dalla valutazione globale di ogni tecnologia.

    Non servono partiti del pro o del contro per l’elettrico, l’ibrido, l’idrogeno o il gas naturale, o per continuare ad andare a gasolio o a benzina.

    Serve un metro preciso e univoco per misurare e un obiettivo condiviso. L’obiettivo a mio parere, credo sia chiaro, sono le Zero Emissioni.

    Il metodo è evidente: progettare per recuperare i materiali e riutilizzare i componenti.

    Risorse rinnovabili nell’energia, insomma, materiali recuperati e recuperabili nell’industria (clicca qui e LEGGI articolo Riciclo Made in Italy per le Batterie al litio). Solo così il prima e il dopo seguiranno la tendenza ormai avviata per il durante. E l’auto, ma non solo l’auto, arriverà ad essere veramente a zero emissioni.

  • Riciclo Made in Italy per le batterie al litio

    Arriva il riciclo Made in Italy a risolvere il grande problema del corretto recupero a fine vita dei materiali contenuti nelle batterie al litio.

    Parliamo delle batterie dei computer, degli smartphone e soprattutto di quelle – molto più grandi – delle auto elettriche e ibride.

    E’ inutile avere un’auto che non emette fumi allo scarico, infatti, se poi la batteria che ha a bordo depaupera risorse naturali ed è impossibile da riciclare recuperandone gli elementi più preziosi.

    RECUPERO DEL LITIO

    Fondamentale è il recupero del litio, materiale non raro e costoso oggi. Ma che ha enormi incognite per il futuro. Le sue riserve sono molto importanti in Sudamerica tra Cile, Argentina e Bolivia, con grossi giacimenti anche in Cina e Australia. Oltre che in Brasile, Portogallo, Afghanistan, Stati Uniti.

    Di litio ce n’è al mondo, quindi. Ma ovviamente non è infinito e l’esperienza del petrolio dovrebbe averci insegnato qualcosa.

    SI RECUPERANO anche Cobalto, Nichel, Manganese

    Se l’attenzione di molti è sul litio, perchè dà il nome alle batterie che proprio sui suoi ioni fanno affidamento per il loro funzionamento. Il riciclo Made in Italy delle batterie al litio consente anche il recupero di Nichel, Cobalto, Manganese contenuti negli accumulatori.

    Si tratta di materiali importanti da recuperare, tra i quali soprattutto il cobalto ha attirato nell’ultimo periodo l’attenzione mondiale. Questo a causa della forte concentrazione delle riserve e della produzione attuale nella Repubblica Democratica del Congo.

    la tecnologia italiana arriva da Cobat e CNR

    Il riciclo Made in Italy per le batterie al litio arriva da una ricerca affidata dal Cobat all’Istituto del CNR ICCOMIstituto di chimica dei composti organometallici di Firenze.

    Il processo italiano è completamente originale, come dimostra l’accettazione della richiesta di brevetto a livello europeo e degli ulteriori brevetti parziali di singole fasi del processo. Si tratta del risultato del lavoro affidato al CNR ICCOM nel 2014 dal Cobat, che nel 2018 ha condotto all’importantissimo risultato.

    Adesso tocca all’industria

    Ora che il processo relativo al riciclo Made in Italy per le batterie al litio è stato individuato, deve partire l’operazione industriale che consenta di sfruttarne le potenzialità. Dal punto di vista economico, oltre che ambientale. A questo proposito il Cobat ha già individuato dei partner industriali italiani coi quali far partire in Italia l’attività di riciclo con recupero pressoché totale dei componenti e dei materiali delle batterie al litio.

    Sono in ballo molti posti di lavoro, oltre che una leadership tecnologica in grado di superare la concorrenza degli altri paesi altamente industrializzati.

    Cosa succede oggi alle batterie al litio

    Attualmente le batterie al litio in Europa finiscono in gran parte in Germania, dove ci sono oltre 15 operatori industriali in grado di recuperare correttamente i componenti e parte dei materiali.

    Molti dei processi applicati, però, non sono in grado di recuperare correttamente i materiali contenuti nella cosiddetta Black Mass. La massa nera contiene proprio Litio, Manganese, Cobalto, Nichel. Oppure li recuperano soltanto parzialmente. Si limitano cioè a Cobalto e Nichel, senza riuscire a estrarre correttamente ed economicamente il Litio e il Manganese.

    Buona parte della Black Mass viene per questo inviata in Estremo Oriente. Principalmente in Corea e nelle Filippine. Qui con processi adeguati vengono estratti tutti i materiali.

    L’operazione avviene vicino alla Cina perchè le aziende di questo paese hanno la tecnologia per estrarre tutti i materiali.

    Le aziende cinesi, che sono nell’ordine delle decine, smaltiscono così tutte le batterie del mercato interno e partecipano, direttamente o indirettamente, alle attività economiche che si sviluppano in altri paesi dell’area.

    In Germania la Volkswagen ha già annunciato di voler entrare nella corsa per il recupero totale dei materiali contenuti nelle batterie al litio (clicca qui vedi articolo).

    Le dimensioni del business

    Il giro d’affari potenziale del riciclo Made in Italy per le batterie al litio è enorme. Il processo messo a punto da Cobat e CNR ICCOM di Firenze per essere economicamente interessante ha bisogno di migliaia di tonnellate di batterie al litio da trattare ogni anno. Soltanto in questo modo diventa vantaggioso estrarre tutti i materiali.

    Oggi le batterie al litio raccolte in Italia sono nell’ordine delle centinaia di tonnellate l’anno. Ma i modelli di auto elettriche e ibride si diffondono sempre di più e alcuni mercati, come quello Norvegese, già hanno espresso interesse per alternative più efficaci agli attuali processi applicati in Germania.

    La start-up italiana capitanata dal Cobat sarà in grado di partire, comunque, in modo economicamente sostenibile già con il livello attuale di raccolta nel nostro paese di centinaia di tonnellate di batterie al litio.

    La strada obbligata

    Quella del recupero di tutti i materiali compresi il Litio, il Manganese, il Nichel, il Cobalto a livello europeo e globale è una via senza alternative. Un prodotto non è sostenibile se porta al consumo di risorse non rinnovabili (clicca qui vedi articolo e VIDEO sostenibilità).

    L’auto elettrica non fa eccezione.

    Il riciclo Made in Italy per le batterie al litio rappresenta quindi un’ottima notizia per l’ambiente, per l’auto elettrica, per il riavvio di uno sviluppo industriale ed economico sano e lungimirante nel nostro paese.

  • Cos’è e a cosa serve Green NCAP il test ambientale indipendente per auto

    Un’autorità in grado di stabilire le auto più efficienti, ovvero quelle che utilizzano meno combustibile, riducendo al minimo o addirittura annullando le emissioni allo scarico, in condizioni di utilizzo reale e per tutta la loro vita.

    È questa la missione del Green NCAP, il consorzio che vuole ripercorrere in campo ambientale le orme dell’EuroNCAP, ovvero l’ente che, nato per valutare su base indipendente la sicurezza delle automobili. L’EuroNCAP è diventato il riferimento con standard sempre più sfidanti e comunque più difficili da raggiungere rispetto a quelli minimi quelli fissati dai sistemi ufficiali di omologazione. Il Green NCAP vuole fare altrettanto saggiando le prestazioni ambientali di un’automobile, attraverso un capitolato in continua evoluzione, dotato di standard più esigenti e realistici rispetto a quelli omologativi, e strutture di prova indipendenti, che nulla hanno a che fare con i costruttori.

    Del consorzio fanno parte la FIA – Federazione Internazionale dell’Auto e diversi enti governativi, tecnici e automobil club. Per l’Italia partecipano al consorzio l’Aci e CSI Automotive. Le vetture scelte per il test inoltre vengono acquistate in incognito attraverso i normali concessionari affinché vi sia la certezza assoluta che siano le stesse che vanno in mano ai normali clienti. I test vengono svolti in laboratorio e su strada sfruttando, come base di partenza, gli standard WLTC, ma andando ben oltre.

    Per quelli in laboratorio infatti viene utilizzata una temperatura di riferimento di 14 °C, ma con le luci e il climatizzatore accesi e utilizzando una gamma più ampia di carichi per il motore con velocità fino a 130 km/h e più accelerazioni da 80 a 130 km/h. I test inoltre valutano la funzionalità dei sistemi di post trattamento ripetendo più volte la stessa procedura e in condizioni diverse di temperatura, cambiando anche le modalità di guida impostabili a bordo del veicolo. Ancora più probanti sono i test su strada. Tanto per cominciare, rispetto a quanto previsto dal WLTC, la gamma di temperature va da -7 a 35 °C invece di 0-30 °C e quella altimetrica è di 0-1.300 mslm invece di 0-700 mslm

    . Le misurazioni, così come nei test RDE (Real Driving Emissions) previsti dal WLTC, sono condotte con l’ausilio di un sistema di misurazione portatile definito tecnicamente PEMS (Portable Emissions Measurement System) e installato direttamente sul veicolo. Il Green NCAP si occupa anche di misurare tutte le forme di resistenza che il veicolo deve superare – massa, aerodinamica, meccanica (trasmissione) e rotolamento degli pneumatici – per valutare quanta dell’energia prodotta dal suo powertrain sia poi realmente trasformata in movimento.

    Gli standard tuttavia sono in continua evoluzione e il Green NCAP ha già fissato una roadmap da qui al 2030 che culminerà con una completa valutazione well-to-wheel e che prevede la definizione entro il 2020 di una procedura per le auto ibride, più complessa rispetto a quella delle auto con sistema di propulsione a benzina o gasolio ed elettriche.

    Nel frattempo sono già state testate le prime automobili alle quali vengono assegnati un voto globale da 0 a 5 stelle accanto ad una valutazione di inquinamento e ad un’altra di efficienza energetica. Ebbene le migliori sono ovviamente due auto elettriche, la BMW i3 e la Hyundai Ioniq elettrica con 5 stelle. Tra le tradizionali svetta la Volkswagen up! GTI (4 stelle.) Mentre a sorpresa non hanno sfigurato un Suv come la Bmw  X1 sDrive18d e l’Audi A7 Sportback 50 TDI Quattro.

    Ma siamo solo all’inizio.

  • Nuova intelligenza artificiale lavoro di gruppo per Robot

    L’intelligenza artificiale è uno dei grandi canali di sviluppo individuati da tutte le grandi aziende del mondo in tutti i settori. Fondamentale per il futuro dell’automobile, dell’energia e dell’ambiente.

    Perché oggi abbiamo grandi moli di dati e di informazioni che è possibile raccogliere e catalogare. Ma la cosa difficile è passare dalla raccolta e dalla catalogazione all’utilizzo mirato, ragionato e utile delle informazioni raccolte.

    E’ come se avessimo sviluppato una grande memoria, capace di imparare alla perfezione tutti i libri che le facciamo leggere. Poi però, quei libri noi non vogliamo sentirceli soltanto ripetere, vogliamo che dallo studio emerga un ragionamento, capace di offrirci nuove soluzioni, nuove opportunità.

    Ecco, in mezzo tra ampiezza della memoria e capacità di ragionamento c’è l’intelligenza artificiale.

     

    Gli sfidanti. Forze e debolezze.

    La sfida è tra diversi approcci allo sviluppo del ragionamento automatico. E’ tra il singolo e il gruppo, anche nel mondo dei robot.

    Il singolo. L’intelligenza artificiale applicata al singolo robot (che nel nostro immaginario è spesso anche un umanoide, ha cioè fattezze o addirittura sembianze umane, ma può essere un’auto, un impianto energetico o il sistema di monitoraggio di un sito ambientale) si basa su concetti radicati nella ricerca di settore, come quelli di intelligenza artificiale debole (weak AI) e intelligenza artificiale forte (strong AI), che hanno riempito negli anni interi volumi di pubblicazioni specializzate. Questo insieme ai più recenti concetti di Machine learning e Deep learning, che differenziano una capacità meramente allenante da una che emula la mente biologica con sofisticate strutture di reti neurali.

    Il gruppo. Si tratta di macchine-robot capaci di aiutarsi vicendevolmente nel ragionamento. Robot che, come gli uomini, imparano il lavoro di gruppo. Così più AI deboli riescono ad essere molto più potenti ed efficaci di un’AI forte. Proprio come nella società umana.

    La nuova intelligenza artificiale mette in contatto un elevato numero di singoli elaboratori, ne raccoglie i risultati e ne supporta la capacità di elaborazione da una nuvola, oppure distribuisce compiti – anche di ragionamento – alle singole macchine e arriva a un risultato impensabile anche per un’AI di grandissima forza tenuta però indipendente dalla connessione in rete.

     

    Che futuro fa.

    Il futuro sta prendendo forma nella rete. Un cambio di scala capace di produrre effetti incredibili, reso possibile da una diversa strategia nella ricerca sull’intelligenza artificiale.

    Per semplificare, si può dire che dall’inseguimento della singola intelligenza molto raffinata da sviluppare in una macchina o in un impianto, simile a quella che ogni essere umano può esercitare grazie al proprio cervello, si passa allo sviluppo di un’intelligenza diffusa, composta dalle capacità di calcolo ed elaborazione di moltissimi computer, funzionanti in altrettanti potenziali robot.

     

    Dico la mia, perché le cose possono cambiare. E spesso è meglio che cambino.

    Io credo che lo sviluppo dell’intelligenza artificiale diffusa, in campo energetico, automobilistico, ambientale sia una grande occasione. La ritengo un’opportunità da non perdere per realizzare un futuro fatto di mobilità ed energia a zero emissioni e di un ambiente riconosciuto come risorsa e non come problema.

  • E-TECH IL NUOVO FULL HYBRID MADE IN EUROPE DELLA RENAULT

    Una delle novità tecnologiche più interessanti del Salone di Ginevra 2019 è certamente l’inedito sistema ibrido full-hybrid E-Tech presentato dalla Renault.

    Scopri nel video come funziona e iscriviti al mio canale YouTube Fabio Orecchini Obiettivo Zero Emissioni.

    La nuova tecnologia Renault per auto ibride full-hybrid e plug-in hybrid sarà sul mercato dal 2020 sulla nuova Renault Clio e poi sulla Renault Megane e sulla Renault Captur, in questi ultimi due casi anche in versione plug-in con batterie ricaricabili dall’esterno.

    Le caratteristiche tecniche principali della nuova proposta tecnologica sono nell’assenza completa di frizioni, sostituite da una soluzione con motore elettrico che mette in sincronia le rotazioni per permettere un semplice accoppiamento meccanico con innesto dock clutch.

    Il motore elettrico di trazione di origine Nissan è annunciato con una potenza tra i 40 kW e i 50 kW, mentre il motore a benzina, anch’esso di origine Nissan, è a 4 marce con cambio automatico.

    La Renault Clio ibrida equipaggiata con questa tecnologia sarà in grado di garantire l’80% di funzionamento in modalità Emissioni Zero con motore a combustione interna spento nella guida urbana.

  • L’AUTO ELETTRICA E’ UNA LAVATRICE CON QUATTRO RUOTE? – VIDEO SFIDA

    L’auto sta diventando elettrica, la lavatrice lo è già.

    Prendo in esame questi due oggetti perché sempre più spesso sono messi l’uno vicino all’altro.

    Da parte dei detrattori dell’auto elettrica perché a loro parere la macchina, perdendo il motore a combustione interna, diventerebbe una sorta di lavatrice con le ruote, termine usato come dispregiativo per indicare come un oggetto di culto, passione e design rischi di ridursi a una specie di elettrodomestico.

    I sostenitori dell’elettrico puro, invece, vedono nella facilità con cui si usa e si alimenta energeticamente una lavatrice l’esempio lampante di come potrebbe essere semplice e meraviglioso il mondo dell’auto elettrica.

     

    Gli sfidanti. Forze e debolezze.

    La sfida tra auto e lavatrice, da un punto di vista energetico, è più sensata di quanto possa sembrare.

    Mette in evidenza alcune caratteristiche poco esplorate della rivoluzione possibile legata alla trazione a Zero Emissioni.

    Parlando di tecnologie che utilizzano elettricità, ci sono due parametri che permettono di inquadrare il confronto: energia e potenza.

    L’auto elettrica, considerando i modelli già sul mercato guidati in condizioni reali, ha bisogno di 15-20 kWh per percorrere 100 chilometri. Per una percorrenza annua di 10.000 chilometri (oggi non realizzabile a causa della scarsa infrastruttura ma domani ipotizzabile), necessita di 1.500-2.000 kWh di energia.

    Per la ricarica – se ha batterie capienti più di 60 kWh, come sta succedendo anche ai modelli di media grandezza – si sta dimostrando in modo sempre più netto che ha bisogno di potenze di 11-22 kW per l’utenza del garage o della casa.

    La lavatrice di ultima generazione in Classe A si accontenta invece di potenze domestiche standard di 3 kW e consuma circa 1 kWh per lavaggio. Ipotizzando 250 lavaggi l’anno, abbiamo che necessita di 250 kWh l’anno.

    L’auto elettrica di famiglia, quindi, consumerebbe in un anno come 6-8 lavatrici di uso domestico.

     

    Che futuro fa.

    Il futuro dell’auto elettrica non ha però le caratteristiche che hanno nel presente i nostri elettrodomestici, lavatrice compresa.

    Soprattutto dal punto di vista energetico. Non tanto per la quantità di energia, che è comunque pari ad alcune lavatrici per famiglia che oggi non ci sono e domani virtualmente compariranno.

    Soprattutto dal punto di vista delle potenze da rendere disponibili sulla rete elettrica, se il modello rimane quello attuale.

    I 22 kW della presa elettrica di ricarica domestica valgono più di 7 volte gli attuali 3 kW di casa.

     

    Dico la mia, perché le cose possono cambiare. E spesso è meglio che cambino.

    Per l’auto elettrica serve potenza, molta più potenza che per la lavatrice.

    Non serve però secondo me una rete potente e centralizzata.

    La soluzione è in una galassia di piccole reti gestite però in modo intelligente.

    Capaci di produrre energia il più vicino possibile a dove l’energia viene richiesta.

    La soluzione si chiama Smart Grid e l’auto elettrica non ne può davvero fare a meno. Così avrà la sua potenza, non col sistema attuale.

  • ELECTRIFY AMERICA ANCHE BATTERIE AD ALTA CAPACITA’ PER LA RETE DI RICARICA ULTRAVELOCE NEGLI USA

    Electrify America è la principale iniziativa d’Oltreoceano e – molto probabilmente – del mondo per la creazione di una rete di ricarica ultraveloce ha un piano di investimenti da ben 2 miliardi di dollari entro il 2027 e, di questi, 800 milioni soltanto in California.

    Electrify America ha base a Reston, nello stato della Virginia e nasce nel 2016.Dall’aprile del 2018 è capitanata dall’italiano Giovanni Palazzo, una delle figure aziendali con maggiori competenze in tema di auto elettriche a livello internazionale.

    Il piano di Electrify America è suddiviso in 4 cicli di investimento, ciascuno da 30 mesi e 300 milioni per l’intero paese e 200 milioni per la California.

    Per la prima fase, si prevedono circa 550 stazioni di ricarica ultraveloce, ciascuna con un numero di punti di ricarica variabile da 4 a 10, delle quali 240 da 150 kW e 320 kW dislocate su 35 grandi direttrici che uniscono 39 stati. Le stazioni sono progettate per essere distanziate mediamente a 66 miglia e a non più di 120 miglia l’una dall’altra e permetteranno di rifornirsi ad una velocità di ricarica di 9-19 miglia al minuto.

    Le altre saranno dislocate in 11 grandi aree metropolitane (New York, Washington, Chicago, Portland, Boston, Seattle, Philadelphia, Denver, Huston, Miami e Raleigh) e saranno da 150 kW, 50 kW ed L2 (7,2 kW e oltre).

    In California sono previste oltre 400 stazioni delle quali più di 50 stazioni dislocate lungo le grandi vie di comunicazione. Le altre 350 e più saranno dislocate nelle aree di Los Angeles, San Francisco, San Jose, San Diego e Sacramento.

    Il secondo ciclo prevede circa 215 stazioni, tutte da 150 kW e 350 kW e, alcune di queste, saranno anche completamente automatiche mentre sarà allargato a 18 il numero delle grandi aree urbane oggetto del piano. Per la California la seconda fase prevede altre 85 stazioni.

    È così che una soluzione intelligente, trovata con l’EPA – Environmental Protection Agency americana e con la californiana CARB – California air resources board dopo i problemi avuti con i test di omologazione delle auto diesel, sta per diventare per la Volkswagen, che ha creato e controlla Electrify America, un fondamentale punto di forza per preparare l’ondata di lanci di auto a batteria che tutti i suoi marchi stanno per intensificare.

    La novità del momento è rappresentata dalle batterie che arriveranno per “rinforzare” la rete di ricarica.

    Electrify America acquisterà dalla Tesla accumulatori da 350 kWh di capacità e 210 kW di potenza che saranno installati entro il 2019 in 100 stazioni di ricarica per “spalleggiare” un network che a metà dell’anno dovrebbe contare 900 stazioni e 5mila punti di ricarica.

    Per la collettività c’è così una visione dell’elettrificazione che parte dalle grandi direttrici, ovvero dal sistema Interstate Highways creato dal presidente Dwight Eisenhower e che è ancora il principale sistema circolatorio degli USA.

    Dunque elettrificare quest’ultimo vuol dire elettrificare la mobilità e renderla praticabile in un paese dove le grandi distanze percorse in automobile sono un’abitudine consolidata: le ultime statistiche della Federal Highway Admnistration parlano di 13.476 miglia all’anno (21.688 km) con punte di 18.858 miglia (30.349 km) per gli uomini tra i 35 e 54 anni, ben più elevate degli 11mila km percorsi in media da un’automobilista italiano.

  • CONSUMA PIU’ L’AUTO O LA CASA? VIDEO SFIDA

    L’energia è ovunque nella nostra vita. Capire l’energia, ci permette di capire cosa stiamo facendo veramente come società, come Paese, anche come singola famiglia.

    Quasi tutti sanno quanto consumi la loro auto. Guardano il computer di bordo, oppure fanno i conti sui chilometri percorsi ad ogni pieno di benzina o gasolio.

    Pochi sanno però quanto consumi la loro casa. Ma da un punto di vista energetico consuma più l’auto o la casa?

     

    Gli sfidanti. Forze e debolezze.

     

    La sfida è quindi tra auto (a benzina o a gasolio) e consumi domestici.

     

    Auto. In media ogni anno un’auto di famiglia con motore a combustione interna, se percorre 10-12.000 chilometri, consuma 10.000 kWh.

    Casa. I consumi elettrici in una casa dove vivono 3-4 persone con TV, lavatrice, lavastoviglie, anche dei condizionatori e il PC sono di 2.500 kWh l’anno. Tutto la casa, consuma cioè per tutte le sue necessità elettriche un quarto della sola automobile. Il consumo dell’auto in un anno vale da solo come 10.000 lavaggi in lavatrice. E spesso di auto ce ne sono due o tre.

    Se poi consideriamo anche il gas naturale per il riscaldamento, l’acqua calda e la cucina dobbiamo aggiungere attorno ai 600 smc l’anno (ovviamente con variazioni tra alpi e Sicilia…) che equivalgono a 6.600 kWh l’anno.

     

    Chi vince la sfida.

     

    Dal punto di vista energetico siamo in presenza di un pareggio, se così si può dire. Perché da una parte ci sono tutte le necessità energetiche di una famiglia di 3-4 persone in termini di elettricità e gas naturale, considerando questi come i due vettori energetici più diffusi in Italia. Tutto il pacchetto arriva a totalizzare 10.000 kWh l’anno di fabbisogno.

    Dall’altra c’è un’unica auto, che potrebbe anche essere semplicemente quella del papà o della mamma. Da sola mangia 10.000 kWh, come tutta la casa. Se di auto – come spesso accade – ce ne sono due o tre, pur calcolando che non facciano tutte 10.000 km l’anno ma di meno, siamo facilmente al doppio dell’energia della casa che viene consumata dalle sole automobili.

     

    Dico la mia, perché le cose possono cambiare. E spesso è meglio che cambino.

     

    Io credo che l’auto debba rimanere tra le dotazioni familiari. Magari utilizzata meglio, per gli spostamenti di piacere o quelli più complessi, non necessariamente per andare ad accompagnare il bambino a scuola, azione che da sola – per una scuola vicinissima e raggiungibile a piedi – può valere ogni mattina l’equivalente di 3-4 lavatrici in termini energetici. Oltre a traffico davanti alla scuola e inquinamento per tutti, soprattutto a motore e sistema di trattamento dei gas di scarico freddo.

    I 10-000 kWh devono diventare però 5.000 e – soprattutto – non possono essere tutti esclusivamente di origine petrolifera. Deve diminuire il consumo, e deve cambiare la fonte, che deve poter essere rinnovabile. Allora sì…